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Drinfeld Modules — Motivation §/ CALGARY

@ Introduced in 1974 by Vladimir Drinfeld as elliptic modules in the
course of proving the Langlands conjectures for GL, over global
function fields

o Provide a function field analogue of the theory of complex
multiplication

o Parallels:

Rank 1 Drinfeld modules +— cyclotomic fields

Rank 2 Drinfeld modules +— elliptic curves
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Rank 2 DMs vs ECs — Similarities & CALGARY

There are many similarities between rank 2 Drinfeld modules and elliptic
curves over finite fields:

o Classification of ordinary and supersingular

@ j-invariants (with outlier j = 0)

@ Similar automorphisms, mostly trivial automorphism group
o Torsion “points”

o Isogenies with duals

@ n-th Drinfeld modular polynomial parameterizes pairs of n-isogenous
Drinfeld Modules

o (-isogeny graph has analogous structure (¢ prime)

@ Endomorphism ring has analogous form
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Rank 2 DMs vs ECs — Differences §/ CALGARY

There are also some very notable differences:

@ No geometry like for points on elliptic curves
@ No Vélu formulas
o Infintite valuations are non-archimedian

Drinfeld modular forms and their Puiseux expansions (Fourier
expansion equivalent) depend heavily on the base field F,

(7]

j-Function looks and behaves very differently

(]

@ Modular polynomials look and behave differently

Totally unsuitable for crytography (classical and post-quantum)

(4]
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Computational Work To Date & CALGARY

@ Sporadic examples
@ Some work on parameterized families

o Algorithms:
» Trace of Frobenius (Musleh 2018, Musleh-Schost 2019)

» j-function expansions, modular polynomials, isogeny volcanos,
endomorpism rings, isogenies, dual isogenies (CGS 2020, this work)

» Improved algorithms (joint with Edgar Pacheco Castan, ongoing)
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Notation CALGARY

Notation:
@ g a prime power
o Iy a finite field of order q
o L 2 Ty a proper extension of I,

o 7 the g-power Frobenius on L, defined via 7(a) = a9 for a € L

Two scenarios for L later on:

o L= ]Fp = Fq[T]/(P) = qu
P(T) € Fq[T] monic, irreducible, of degree d

0 L =Cqsx = (Fg(T)x)s (function field analogue of C)
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Twisted Polynomials CALGARY

Definition
L{7} C End(L) is the ring of twisted polynomials in 7 with
o standard polynomial addition
o twisted multiplication 7w = a7 for o € L (non-commutative)

Motivation:

For av € IL, multiplication by « is an endomorphism on I and we have

(Ta)(x) = 7(ax) = a9x? = (a97)(x)
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Structure Maps & CALGARY

There are natural maps F[T] — L:

o L = Fp: reduction mod P

o L = C.: inclusion

Sample computation in F,[T] - L — L{r}:

(T+7)QRT?+7)=2T+ Tr+27°T> +7°
=273+ Tr+27(rT?) + 7
=273+ Tr+27(T%97) + 73
=2T° 4+ Tr+2(r T2 + 7°
=273+ Tr+2T% 72 4 73
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Drinfeld Modules CALGARY

A Drinfeld module over L is an [F4-algebra homomorphism
@ :Fg[T] = L{r}, a—> ¢,
with the following properties:

Q The constant term of ¢, is a (image of a under map Fq[T] — L)
Q »(Fg[T]) Z L

Why a module?

L is an Fq[T]-module in two different ways (a € Fg[T], o € L):

a*a=aux
axa = p,(a) = aa + higher terms in 7(«)

By property 2, these are two different actions.
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Properties of Drinfeld Modules & CALGARY

@ Injective when L = C, by property 1

o Uniquely determined by the image of T:
pr=T+ar+omr+...+¢7" (geL)
with ¢, # 0. The degree r = deg. (1) is the rank of .
o For m € Fy[T], the m-torsion of ¢ is
plm] = ker(pm) = {a € L | gm(a) = 0}
If Pt m (when L =Fp), then

plm] = Fg[T]/(m) x Fq[T]/(m) x --- x Fq[T]/(m)

r times
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Rank 1 and 2 Drinfeld Modules &) CALGARY

Rank 1: p7 =T+ 7 Carlitz module (1935)

Gal(L(p[m])/LL) = (Fq4[T]/(m))® — function field analogue of Q(¢m).

Rank 2: o= (g,A) via o7 =T +gr+A7%> (gelL,Acl¥)

gatl
A

j-invariant of p:  j el

ordinary if p[P] = Fy[T]/(P)

p: ]Fq[T] — FP{T} is {supersingulal’ if QD[P] = {0}

Function field analogue of an elliptic curve.
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Maps of Drinfeld Modules & CALGARY

Let ¢, be Drinfeld modules (of any rank) over L.

Definition

A morphism v : ¢ — 1) over L is a polynomial u(7) € L{7} such that
up, =1u  forall ae Fg[T].

Endomorpism: ¢ = 1

Isomorphism: u is invertible (i.e. v € L*)

Isogeny: non-zero morphism (preserves rank)

Dual isogeny: i € L{7} with iu = ¢, and uii = v, for some n € Fq[T]

Degree of the isogeny: n  (then u is called an n-isogeny)
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Isogeny & Degree Linear and Monic & CALGARY
let g=3, P(T) = T>+2T + 1.

O u=TH+2T + T+ 1:(T%T°) — 2T*+ T?2T* + T +2) is a
T-isogeny with dual i1 = T37 + T4+ T2+ T

@ Uu=T+2T?+1: (T2 T?+2T) — (QT*+2T +2,2T3+ T2 4+2T)
is a (T +1)-isogeny with dual o = (T2 +2T)7+ T4+ T3+ T2+ T

o u=T+2T3 42T (T3 T4 +1) — QT*+ 1, T*+ T3+ T2 +1)
is a (T + 2)-isogeny with dual & = (T*+ 1)1+ T3+ 272 +2T +1

Proposition (Linear monic isogenies of linear monic degree)

Let n € Fg[T] be linear and monic, and let g € L and A, € L*. Then
u=rT1— € L{r} is an n-isogeny on the rank 2 Drinfeld module

¢ = (g, A) over L if and only if Aa9%! 4 ga+ n = 0. In this case, u
maps ¢ to the Drinfeld module ¢ = (g9 — aA + ad’ A9, A9). Moreover,
the dual isogeny of uis i = A7 + g + Aaf.
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Analytic Theory Drinfeld Modules &/ CALGARY

@ Drinfeld modules of rank r over C4, are in one-to-one correspondence
with rank r lattices over Fg[T] in C.

o This correspondence extends to a group isomorphism and an
[F4-vector space isomorphism mapping morphisms between rank r
Drinfeld modules over C, onto morphisms between [F,[ T]-lattices of
rank r in C..

@ The coefficients of a Drinfeld module over C., are Drinfeld modular
forms that can be written in terms of Eisenstein series. As such, they
have Puiseux expansions with respect to a suitable uniformizer.

@ There is reduction and lifting a la Deuring between pairs consisting of
a Drinfeld module ¢ and an endomorphism on ¢ over C, and pairs
consisting of a Drinfeld module % and an endomorphism on @
over Fp.

Gekeler 1983, 1986, 1988, 1999; Goss 1978, 1980, 1998
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Coefficients in Rank 2 §/ CALGARY

Let ¢ = (g, A) be a rank 2 Drinfeld module over C, with associated
Fq[T]-lattice A. Then

g =g(N) =1 Eg-1(N)

A= AN) = [1]7EZT(A) + [2] B4 (A)
[i]=T9 — T eF,[T]

Ex(N) = Z —  Eisenstein series of weight k for A
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Coefficients in Rank 2 Explicitly & CALGARY

The first few coefficients of g and A are given as follows:

T 9g(N) =1 —[1]s — [1]s7 9 4 [1]s7 — [1]([1] + €)sT 1 + ...

TUTA(N) = —s + 52— [1sTH — s 791 15T ([1] = [1]9 + €)sT T 4 ..

1 =[1] E;_1(F4[T]) (normalization factor, analogue of 27i € C)

e =1if g =2 and ¢ = 0 otherwise

s=t9 1 with t71 = eﬂFq[T](ﬁZ) (ana|ogue of e27riz)

en(z) =z H (1 — ) exponential function associated to A
0#£AEA
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Jj-Function in Rank 2 ) CALGARY
S Ay gt 1 0 2 3
Jj=Jj(\) = A= + ags” + ais + apxs” + azs” + ... (ai € Fg[T))

Examples:

q | j-function

ST (T2 + T+ DS+ (TH+ T2)s+(TO+ TP+ T4+ T34 T2 4 T)s?

2| H(TE+TO+ To+ T3+ 1)s* + (TH+ TS+ (TO+ T5 + T3+ T2)s0
H(TH4+ T2)s" + (T4 TP+ (T8 4+ T2)s° + ..

25 P (T3 42T + 25+ (TO+ T3+ T2+ (T2 + T 4 T4 1272 4 2)5°
3| H(TO+2T3)s" + (T2 42T 4 2T0 + THs® + (T + T 4 TH 4+ T°
H2T7 42T 4273 +2T)s0 + (2T + T2 4 T 1 2T4)s% ...

45+ (TP +4T)S" +45° + (TP + T°+3T)s* + (4T + T2 4+ T6 +472)s°
+4s” 4+ (TP +2T° +2T)s® + (3730 42726 14710 1476 4 272)s% + ...
6’1 (T7+6T)s°+655+(T49+T7+5T)56+(6T56+T5°+T8+6T2)s7
4651 4 (T4 4 2T7 +4T)s™ + (5T 42750 1 6T +4T8 4-4T72)s13

Can compute j(z) to arbitrary precision N in time O(N2(V/N + q)) and
space O(gN?) (implemented in SAGE).
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Rank 2 Drinfeld Modular Polynomials &) CALGARY

Definition

For n € Fq4[T], the n-th Drinfeld modular polynomial ®,(X,j(z)) is the
minimal polynomial of j(nz) over C(j(2)).

Properties (Bae 1992):
o The coefficients of ®,(X, j(z)) are power series in s over F[T].
e &,(j',j)=0 <= j,j are n-isogenous.

o As a polynomial in two variables, ®,(X, Y') has coefficients in Fq[T]
and is symmetric in X and Y. Leading terms are XN(") and yN("

with )
N(n) = |n| g (1 + |p\>

where |a| = q?&7(2) for a € F,[T].
For n = ¢ irreducible, we have N(¢) = || + 1 = qdeer(V) 4 1.
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A Small Parameterization Example & CALGARY

Let g =3, P(T) = T® +2T +1, and recall the T-isogeny

u=T+2T+ T+1:p=(T, T = p=(T"+ T22T*+ T +2)

@) =T+2, j@)=2T*+T342T2 4+ T +2

ST (X, (@) =X+ T3+ 1)X3 4 (T3 +2T%2 +1)X?
(TP 2T+ TH D)X 2734 T2 42T +1

(mod P)
The four roots of (X, j(p)) in L are
T 4+ T24+T+2 T4+ T3 4272
2T 4273+ T2+ T +1 2T+ T3 +2T2+ T +2=j(v)

Hence, ®1(j(¢),j(¢)) = 0, which confirms that ¢ is T-isogenous to .
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Example: T-th Modular Polynomial @ CALGARY

Schweizer 1995, Bassa-Beelen 2012:

g+1
dr(X,Y) = (X + Y+ T(TI ! - 1)q+1> — XY~ XY“

F(XY)I(TY9— 1)+ XY(TT 1= 1) — TI9XY S(X, Y)

[(g—1)/2] q—1-2n
= ) G(XYT? 1y <XY —TIX+Y 4+ T(TI = 1)q+1)
n=0
1 2
C, = ( n) n-th Catalan number
n+1\n

Polynomial in Fq[T][X, Y] of degree g + 1.
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CALGARY

Consider the case n = ¢ € Fy[T] with £ # P monic and irreducible.

The analytic method for computing ®,(X, Y) computes j(z) and j(¢z) to
sufficient precision and recovers the coefficients of ®y(X, Y) from

®4(j(£2),j(2)) = 0 (%)

@ Compute j(z) to precision |¢|? + |¢| — 1 and j(/z) to precision |¢|2.

@ Compute the powers j(z)" and j(¢z)", 2 < i < |¢| + 1 using this
precision.

© Substitute the approximations into (*) and find the coefficients of

®y(X, Y) via linear algebra (Bae-Li 1997).
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Example: ¢ (X, Y) over F3 Y CALGARY

Term | Contficent Term | Coutficent Term Term | Costficent
X yo |1 2T 2T TR TR 12Ty T 27 g T T 2T TR T T T TR T T T 2T TP 79 2T 1 Py 2T
v |2 rya xoyr | 2T T TR 27O T TR pp e P FEE TR TP R oy xpe | 2T T T 2T Lz o
VX [0 TEA2TR LTI 270 L 2TS 270 12T L0 TS 2T 2T R L
XX o i TTaTR 2T TR TR T 2T 12T T4 TH 2T 2T 4 27 42T 4278
Xove, X0y |2 s aT o T 2T 2R 2T L 2P T £ TR T oo xoys | $2TE AT 2T T T g7 gy | [T T o g e T 7 T T T
Xve e [T LTI T T 2T TE 42T 2T T AT 2T 42T 2TB 42T 2T 42T s 2Th 0o
Vi XV | T rar 2T 2T T T TR 2TR 2T TR waraT T
v X [T L TR T L T T XTY.XYT | 42794 TR 2T L 2TH L TR 2R 2T s TR TR TR TR TR IR e 1T L e
VI [T 42T 42T Ty 2TH 2R 78 Joys oy | $2TRH2TE TR 2T T4 g7 o 78 B B T R s i
Xy 0P | T aTo T e s P L T L L FTH T 2T 2TH L 2T T4 T 2T TH 2T TR TR TR 2T TR TH
By [T 2T aTe T L TR T LR I T ™ o 212 7821
o T T T eye |7 TR TR T T g g T 2T P T TR e TR T 2T 27 2T 7B 2T 1 TR 2T 2T
VT XV | T 279 2T L TR T T T L T T4 71270 4 27 4276 T oy oy [T T AT 2O 2127 a1 a7 || T 2T T T T TS T2
Xve xov [ s aTR T s T 2TE L TR 2T 12T T 12T 2T TS 2T 2T 7O T 2T T T T T T T 2T 0T T 2T
vV [T TR T T T TR TR T T Joys, xoye | +2TH 2T 42T 4278 o T 7 7 LT 2T LTI T 4 278 2 T T a7 oS
T TR TR TR aTR . TR aTI 2T T TH 2T T TS T 79427 427 T 2704 24 T TR 270 TR T 2T L T T 2T T TR 2R T
XX ara o T2 o1 oy, s |$2T T T T8 o a7y ey oy ys | AT AT TR T o g g 70
T T TR TR 2T TR TR T 2T 2T 2T TR L 2T TR S 2T T T 2T 2T 2T T T 2T TH QT4 TH L TR 2T TR TH 4 2TH
R I i e XY XOVE | 1274 42T 204 T 20 4 2724 TO 2T +270 12784 T4 T2 4270 TR 7B T T
2T T TR aTR T aTR L TR T AT T4 7H 4TS 42Tt 427 T I T TR 9 L TR T 2T 2T T L T 2T 2T 2T 2T
XXV g arey 1oy am T e LT 2T L TR 2T T 2T T2 2T T T 2T 4 T 2T woys | ATEETHATS o8 T T e
TR T e T TR AT T s T aTE KOV XIS | 4T 2T 2T 2T L TS T L T T XYS [ 2T 2T 2T 2T 72T 7 T T2
G e 42T 4 2TIO L 2TV 4 TS T TH 4 794275 T 4T L TO LT L 2T 4 TR 2T T 2T | 2700 279 1 79 279 279 278 1 2T%
P FiC s e 2T TR 12T TR 12T 1 2T T 2T +TE o oy | ST TR TR T T T T e
XY Loy are Joya, xiye | +THH2T 42T 24 2T T 704 T T L T T T T TH 27 T T8 T
o IR TR TR TR AT ST 2T T TH L TR 2T T TR iy | 42T TR TR T oy T o o0 TH TR TR 2T 2T 4 TR 204 78
270 TR TH QTR TR LT TR TR T T 2T 279 2T 4 279 2T 1 79 279
TR TR AT AT I TR TR TR LT T 2T 2P 7B 2T 7B 2T 2T 42714 T2 42700 XYL XY | 2T 2T T T
R R e o | | oy e T T T T 4275 425 1271 427 2 TR TR 2T 2T 2T 12T T ATS LTS P T
v oy [P AT T AT T T T TTS AT ST TR TR TE ||y o | TT 2T T T T 27 27 e ye | T T e T T TR e
TP 2T L T 2T 42T 274 270 2T 4 2TH L T4 T 27 4 T TR 2T TR TS T TR TS 2T T4 T4 T 2T 4 TR 2R 4 2T+ T
T TR TR TR 2R T 2T e IO 2T 2T 2T T 2T T T 2T P S e T
XTYA X7 | 47y T 7y g gy i 7 T TR T 2T 27T T 27T T VT T TR T 2T T4 2T 4 ITH 4 2TR 4 TH4 TR T84 T
u XS T TR T 70 12T T a7 oyt v T T 2T g v o
T2 TR TR TR 2T 2T 27 T T T 2TH 2T T T o
™ FTHAATH L TR T TR TR T
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ECs vs DMs — Complexity Comparison & CALGARY

’ Asymptotic complexity (O) H Elliptic curves ‘ Rank 2 Drinfeld modules ‘
Time 45" ql¢f®
Space & qle|®

* Elkies 1998, Charles-Lauter 2005

Reasons for the discrepancy: different growth rates for
o the coefficients of the powers of j
o the coefficients of (X, Y)

’ Growth rate H Elliptic curves ‘ Rank 2 Drinfeld modules ‘
k-th coefficient ofji Vki* qi **

Log height of ®;(X,Y) | 6flog({)** | between** %' and w

* Charles-Lauter 2005 ** Bae-Li 1997 % Cohen 1984
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Complexity Comparison (cont’d) & CALGARY

Thanks to Drew Sutherland for the following viewpoint:

Let B be a provable upper bound on the coefficients of ®,.
e B = O(Y) for elliptic curves

o B = O(f3) for rank 2 Drinfeld modules
(assuming q fixed, deg(¢) — o)

’ Asymptotic complexity (O) H Elliptic curves | Rank 2 Drinfeld modules
Time B B®
Space B3 B?

For ¢ linear, our computations suggest that the coefficients of ®, grow as
q*(q+1) = qlO|(J¢] +1) .
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Other Algorithms CALGARY

Current (SAGE code at https://github.com/pcaranay/DModules):

@ Modular polynomials via the classical analytic method

o Ordinary f-isogeny graph (from ®,(X, Y))

@ Ordinary endomorphism ring (after Kohel 1996, Fouquet 2001,
Fouquet-Morain 2002)

o (-isogeny (detection and computation)

o Dual isogeny

Future and in progress:

@ Modular polynomials via Chinese Remaindering (after
Broker-Lauter-Sutherland 2011) — joint work with E. Pacheco Castan

@ Modular polynomials via evaluation/interpolation (after Enge 2009)
o Endomorphism ring (after Bisson-Sutherland 2011)

@ Supersingular case
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Modular Polynomials via CRT &/ CALGARY

Broker-Lauter-Sutherland’s algorithm (2011) for finding classical modular
polynomials uses the following ingredients:

O Hilbert class polynomial
» Roots are all the j-invariants with CM by the same order O

> Integer coefficients _

» Time O(|disc(0)|), space O(|disc(O)|*/?) (Sutherland 2011)
Q /l-isogeny graph

> Vertices: j-invariants, edges: (-isogenies

> All valencies are £/ +1 or 1

» Ordinary components are volcanos

@ Chinese Remainder Theorem
» Compute ®y(X, Y) (mod p) for suitable primes p and apply CRT

Time and space complexity 5(23).

Currently adapting this method to rank 2 Drinfeld modules (joint work
with Edgar Pacheco-Castan)
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Final Motivation CALGARY

One more reason to study Drinfeld modules: counter-terrorism!
From Twenty Four, Season 4, Episode 11:

Ali: “I'm sorry | had to call you here, Marwan, but | had no
choice. CTU is trying to disable the override using a
Drinfeld module. They've already shut down over 90
reactors.”

Marwan: “/ always knew they'd stop some of them. The important
thing is that one of the reactors has melted down. As long
as the override has control of the other five, | can do the

rest from here.”

https://www.youtube.com/watch?v=YKHNYBDazAU
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That’s All, Folks! CALGARY

+ + + Thank You! Questions? x x x

JOOOOOOL COOWLLLEL COLLEEEE
(T2 + T + 2)-isogeny volcano containing

J=TO42T8 4+ 77+ TO 4275 4+ T# 4273
over L = F3[T]/(T +2T° +-27° 4 2T* 4+ T +2)
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