PCF Maps

Unlikely Intersections

Some Current Trends in Arithmetic Dynamics¹

Michelle Manes (mmanes@math.hawaii.edu) University of Hawai'i at Mānoa

Géométrie algébrique, Théorie des nombres et Applications 19 August, 2021

¹ R. Benedetto, P. Ingram, R. Jones, M. Manes, J. H. Silverman, and T. J. Tucker, Current trends and open problems in arithmetic dynamics. Bull. Amer. Math. Soc. (N.S.) 56 (2019), no. 4. 611–685.

Arithmetic Dynamics	Motivating Analogy	PCF Maps 000000000000	Unlikely Intersections
Real Talk			

Everything sucks. Not just for me, for a lot of us. And we don't talk about that.

PANDEMIC moving 6K miles quarantine FEAR sexism illness attempted coup no community university policies no work space ANXIETY isolation HARASSMENT elder care WHY MATH no motivation

Arithmetic Dynamics •••••••	Motivating Analogy	PCF Maps 000000000000	Unlikely Intersections

Motivating Analogy

Unlikely Intersections

Dynamical system

Definition

A (discrete) dynamical system consists of a set *S* and a function $f : S \rightarrow S$. This self-mapping allows iteration.

$$f^n = \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}} = n^{\text{th}}$$
 iterate of f

DefinitionThe (forward) orbit of a point $\alpha \in S$ is $\mathcal{O}_f(\alpha) = \{f^n(\alpha) \colon n \geq 0\}.$

Arithmetic Dynamics	Motivating Analogy	PCF Maps 00000000000	Unlikely Intersections
Orbits			

$f: \mathbb{C} \to \mathbb{C}$ given by $f(z) = z^2 - 1$

Start with $\alpha = 1$.

Arithmetic Dynamics	Motivating Analogy	PCF Maps	Unlikely Intersections
Orbits			

So $\alpha = 1$ is **preperiodic** under *f*.

 $1 \in \operatorname{PrePer}(f)$.

Arithmetic Dynamics	Motivating Analogy	PCF Maps	Unlikely Intersections
Orbits			

$f: \mathbb{C} \to \mathbb{C}$ given by $f(z) = z^2 - 1$

Start with $\alpha = \varphi$.

So $\alpha = \varphi$ is **periodic** under *f* (with period 1). We also saw that 0 and -1 are periodic with period 2.

$$\{0, -1, \varphi, \overline{\varphi}\} \subset \operatorname{Per}(f) \subset \operatorname{PrePer}(f).$$

Arithmetic	Dynamics
0000000	00

PCF Maps

Unlikely Intersections

Orbits

$f: \mathbb{C} \to \mathbb{C}$ given by $f(z) = z^2 - 1$

Start with α very close to $\bar{\varphi}$.

-0.618	-0.364236
-0.618076	-0.867332
-0.617982	-0.247735
-0.618098	-0.938628
-0.617955	 -0.118978
-0.618132	-0.985844
-0.617913	-0.0281113
-0.618184	-0.99921
-0.617849	-0.00157987
-0.618263	-0.999998

Arithmetic Dyna	amics
0000000000	

PCF Maps

Unlikely Intersections

Orbits

$f: \mathbb{C} \to \mathbb{C}$ given by $f(z) = z^2 - 1$

Start with α very close to $\overline{\varphi}$.

-0.618	-0.364236
-0.618076	-0.867332
-0.617982	-0.247735
-0.618098	-0.938628
-0.617955	 -0.118978
-0.618132	-0.985844
-0.617913	-0.0281113
-0.618184	-0.99921
-0.617849	-0.00157987
-0.618263	-0.999998

This α is a wandering point under *f* with bounded orbit.

Arithmetic	Dynamics
0000000	00

PCF Maps

Unlikely Intersections

Orbits

11

$f:\mathbb{C} \to \mathbb{C}$ given by $f(z) = z^2 - 1$

Start with α very close to $\bar{\varphi}$.

$-0.618034 + 1. \times 10^{-6}$ i	-0.765862 +0.708062 i
$-0.618034 - 1.23607 \times 10^{-6}$ i	-0.914807 - 1.08456 i
$-0.618034 + 1.52786 \times 10^{-6}$ i	-1.33939 + 1.98432 i
$-0.618034 - 1.88854 \times 10^{-6}$ i	-3.14356 - 5.31556 i
$-0.618034 + 2.33437 \times 10^{-6}$ i **	-19.3732 + 33.4196 i
$-0.618034 - 2.88544 \times 10^{-6}$ i	-742.545 - 1294.89 i
$-0.618034 + 3.5666 \times 10^{-6}$ i	$-1.12536 \times 10^{6} + 1.92303 \times 10^{6}$ i
$-0.618034 - 4.40856 \times 10^{-6}$ i	$-2.43158\!\times\!10^{12}$ $-4.32821\!\times\!10^{12}$ i
$-0.618034 + 5.44928 \times 10^{-6}$ i	$-1.28208\!\times\!10^{25}$ $+2.10488\!\times\!10^{25}$ i
$-0.618034 - 6.73568 \times 10^{-6}$ i	$-2.78679{\times}10^{50}$ $-5.39725{\times}10^{50}$ i

Arithmetic	Dynamics
0000000	00

i

i

Unlikely Intersections

Orbits

$f:\mathbb{C} \to \mathbb{C}$ given by $f(z) = z^2 - 1$

Start with α very close to $\overline{\varphi}$.

$-0.618034 + 1. \times 10^{-6}$ i		-0.765862 + 0.708062 i
$-0.618034 - 1.23607 \times 10^{-6}$ i		-0.914807 - 1.08456 i
$-0.618034 + 1.52786 \times 10^{-6}$ i		-1.33939 + 1.98432 i
$-0.618034 - 1.88854 \times 10^{-6}$ i		-3.14356 - 5.31556 i
$-0.618034 + 2.33437 \times 10^{-6}$ i	•••	-19.3732 + 33.4196 i
$-0.618034 - 2.88544 \times 10^{-6}$ i		-742.545 - 1294.89 i
$-0.618034 + 3.5666 \times 10^{-6}$ i		$-1.12536 \times 10^{6} + 1.92303 \times 10^{6}$ i
$-0.618034 - 4.40856 \times 10^{-6}$ i		$-2.43158 \times 10^{12} - 4.32821 \times 10^{12}$
$-0.618034 + 5.44928 \times 10^{-6}$ i		$-1.28208 \times 10^{25} + 2.10488 \times 10^{25}$
$-0.618034 - 6.73568 \times 10^{-6}$ i		$-2.78679 \times 10^{50} - 5.39725 \times 10^{50}$

This α is a wandering point under *f* but the orbit is not bounded.

Classical \mathbb{R} and \mathbb{C} dynamics study topological and analytic properties of orbits of points under iteration of a function on a \mathbb{R} or \mathbb{C} manifold.

Arithmetic Dynamics	Motivating Analogy	PCF Maps	Unlikely Intersections
Arithmetic Dynami	cs		

Arithmetic dynamics studies properties of orbits of self maps with a more number-theoretic flavor.

- Maps = morphisms of algebraic varieties.
- Number-theoretic questions:
 - rational points in orbits?
 - integer points in orbits?
 - primes in orbits?
 - primitive prime divisors in orbits?

Natural dynamical equivalence relation:

 $S \xrightarrow{f} S$ $\phi \downarrow \qquad \qquad \downarrow \phi \qquad \phi \in \operatorname{Aut}(S)$ $S \xrightarrow{g} S$ $f \sim q \text{ if } q = f^{\phi} := \phi \circ f \circ \phi^{-1}.$

Natural dynamical equivalence relation:

$$f \sim g$$
 if $g = f^{\phi} := \phi \circ f \circ \phi^{-1}$.

Respects iteration:

$$(f^n)^{\phi} = \left(f^{\phi}\right)^n.$$

E = elliptic curve defined over a number field K^2 .

 $f_{E,m} \in K(x)$ has degree m^2 .

²Can replace K by a local field, function field, finite field, but I'll focus on number fields for ease of exposition.

17

Arithmetic Dynamics	Motivating Analogy o●ooooo	PCF Maps	Unlikely Intersections
Dictionary			

Elliptic Curves	Arithmetic Dynamics
$E \stackrel{\psi}{ ightarrow} E$	$f: \mathbb{P}^1 o \mathbb{P}^1$
\mathbb{Z},\mathbb{Q} points on E	\mathbb{Z},\mathbb{Q} points in orbits

Arithmetic Dynamics	Motivating Analogy o●ooooo	PCF Maps 00000000000	Unlikely Intersections

Elliptic Curves	Arithmetic Dynamics
$E \stackrel{\psi}{ ightarrow} E$	$f:\mathbb{P}^1 o\mathbb{P}^1$
\mathbb{Z},\mathbb{Q} points on \pmb{E}	\mathbb{Z},\mathbb{Q} points in orbits

Theorem (Siegel, 1928)

An elliptic curve $E : y^2 = x^3 + Ax + B$ with $A, B, \in \mathbb{Z}$ has only finitely many points P = (x, y) with integer coordinates $x, y \in \mathbb{Z}$.

Arithmetic Dynamics	Motivating Analogy	PCF Maps	Unlikely Intersections
Dictionary			

Elliptic Curves	Arithmetic Dynamics
$E\stackrel{\psi}{ ightarrow} E$	$f:\mathbb{P}^1 o\mathbb{P}^1$
\mathbb{Z},\mathbb{Q} points on E	\mathbb{Z},\mathbb{Q} points in orbits

Theorem (Silverman, 1994)

Let $f \in \mathbb{Q}(z)$ such that $f^2 \notin \mathbb{Q}[z]$. Let $\alpha \in \mathbb{Q}$. Then

 $\# (\mathcal{O}_{f}(\alpha) \cap \mathbb{Z}) < \infty.$

Arithmetic Dynamics	Motivating Analogy	PCF Maps 00000000000	Unlikely Intersections

$E_{\text{tors}} \leftrightarrow \text{PrePer}(f)$

Suppose $P \in E_{\text{tors}}$ with $[n]P = \mathcal{O}$. The orbit of P is a finite set: $\{P, [m]P, [m^2]P, \dots\} = \{P, [m \mod n]P, [m^2 \mod n]P, \dots\}.$

Arithmetic Dynamics	Motivating Analogy	PCF Maps	Unlikely Intersections

$E_{\text{tors}} \leftrightarrow \operatorname{PrePer}(f)$

Suppose $P \in E_{\text{tors}}$ with [n]P = O. The orbit of P is a finite set: $\{P, [m]P, [m^2]P, \dots\} = \{P, [m \mod n]P, [m^2 \mod n]P, \dots\}.$

$$m^k \equiv m^\ell \pmod{n}$$

 $[m^k]P = [m^\ell]P \quad \text{on } E$
 $x(m^kP) = x(m^\ell P)$
 $f^k(x(P)) = f^\ell(x(P))$

Arithmetic Dynamics	Motivating Analogy	PCF Maps	Unlikely Intersections

$E_{tors} \leftrightarrow \operatorname{PrePer}(f)$

Suppose $P \in E_{\text{tors}}$ with [n]P = O. The orbit of P is a finite set: $\{P, [m]P, [m^2]P, \dots\} = \{P, [m \mod n]P, [m^2 \mod n]P, \dots\}.$

$$m^k \equiv m^\ell \pmod{n}$$

 $[m^k]P = [m^\ell]P \quad \text{on } E$
 $x(m^kP) = x(m^\ell P)$
 $f^k(x(P)) = f^\ell(x(P))$

So $x(P) \in \operatorname{PrePer}(f)$.

Arithmetic Dynamics	Motivating Analogy	PCF Maps 00000000000	Unlikely Intersections

Elliptic Curves	Arithmetic Dynamics
$E \stackrel{\psi}{ ightarrow} E$	$f:\mathbb{P}^1 o\mathbb{P}^1$
\mathbb{Z}, \mathbb{Q} points on E Siegel's theorem	\mathbb{Z},\mathbb{Q} points in orbits finitely many integer points in orbits
torsion points	preperiodic points

Arithmetic Dynamics	Motivating Analogy	PCF Maps 00000000000	Unlikely Intersections

Elliptic Curves	Arithmetic Dynamics
$E \stackrel{\psi}{ ightarrow} E$	$f: \mathbb{P}^1 o \mathbb{P}^1$
\mathbb{Z}, \mathbb{Q} points on E Siegel's theorem	\mathbb{Z},\mathbb{Q} points in orbits finitely many integer points in orbits
torsion points	preperiodic points

Theorem (Mazur, 1977)

The torsion subgroup of $E(\mathbb{Q})$ contains at most 16 points.

Arithmetic Dynamics	Motivating Analogy	PCF Maps	Unlikely Intersections
	0000000		

Elliptic Curves	Arithmetic Dynamics
$E \stackrel{\psi}{ ightarrow} E$	$f: \mathbb{P}^1 o \mathbb{P}^1$
\mathbb{Z}, \mathbb{Q} points on E Siegel's theorem	\mathbb{Z},\mathbb{Q} points in orbits finitely many integer points in orbits
torsion points	preperiodic points

Conjecture (Morton-Silverman, 1994)

Let $[K : \mathbb{Q}] = n$ and let $f \in K(z)$ have degree $d \ge 2$. There is an absolute constant C(d, n) such that

 $\# \operatorname{PrePer}(f, K) < C.$

Arithmetic Dynamics	Motivating Analogy ooooooo●	PCF Maps	Unlikely Intersections

Elliptic Curves	Arithmetic Dynamics
$oldsymbol{E} \stackrel{\psi}{ o} oldsymbol{E}$	$f: \mathbb{P}^1 o \mathbb{P}^1$
\mathbb{Z}, \mathbb{Q} points on E Siegel's theorem	\mathbb{Z},\mathbb{Q} points in orbits finitely many integer points in orbits
torsion points Mazur's theorem	preperiodic points uniform boundedness conjecture
complex multiplication	post-critically finite maps

Motivating Analogy

 Unlikely Intersections

Postcritically finite maps

Definition

Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ and let $P \in \mathbb{P}^1$. Choose a local parameter z_P at P. Then P is a **critical point** of f if

$$(df/dz_P)(P) = 0.$$

A morphism $f : \mathbb{P}^1 \to \mathbb{P}^1$ is **postcritically finite** (PCF) if every critical point of *f* is preperiodic. (That is, the "post-critical set" is finite.)

Motivating Analogy

 Unlikely Intersections

Postcritically finite maps

Definition

Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ and let $P \in \mathbb{P}^1$. Choose a local parameter z_P at P. Then P is a **critical point** of f if

 $(df/dz_P)(P) = 0.$

A morphism $f : \mathbb{P}^1 \to \mathbb{P}^1$ is **postcritically finite** (PCF) if every critical point of *f* is preperiodic. (That is, the "post-critical set" is finite.)

The critical points of an endomorphism *f* of \mathbb{P}^1 are the points at which *f* fails to be locally bijective.

Arithmetic Dynamics	Motivating Analogy	PCF Maps ○●○○○○○○○○○○	Unlikely Intersections
Context			

Not obvious: Every Lattès map is PCF.

Arithmetic Dynamics	Motivating Analogy	PCF Maps o●oooooooooo	Unlikely Intersections
Context			

Not obvious: Every Lattès map is PCF.

Hubbard: "The main question to ask about a rational map is: *what are the orbits under iteration of the critical points?*"

Arithmetic Dynamics	Motivating Analogy	PCF Maps 00●000000000	Unlikely Intersections
PCF vs CM			

Some properties of CM elliptic curves:

- algebraicity (isomorphic to an EC over $\overline{\mathbb{Q}}$).
- sparsity (CM points are a countable Zariski-dense set of points in moduli space, finitely many CM curves over a given number field)
- potential good reduction at every prime (integral j invariant)
- exception to Serre's open image theorem for Galois representations

Arithmetic Dynamics	Motivating Analogy	PCF Maps ००●००००००००	Unlikely Intersections
PCF vs CM			

Some properties of CM elliptic curves:

- algebraicity (isomorphic to an EC over $\overline{\mathbb{Q}}$). \checkmark
- sparsity (CM points are a countable Zariski-dense set of points in moduli space, finitely many CM curves over a given number field)
- potential good reduction at every prime (integral j invariant)
- exception to Serre's open image theorem for Galois representations

Theorem (Thurston, 1970s)

Let $f \in \mathbb{C}(z)$ have degree $d \ge 2$. If f is PCF and not conjugate to a Lattès map, then is conjugate to one defined over $\overline{\mathbb{Q}}$.

Arithmetic Dynamics	Motivating Analogy	PCF Maps	Unlikely Intersections
		0000000000	

Digression: Moduli spaces

A morphism $f : \mathbb{P}^1 \to \mathbb{P}^1$ of degree *d* is given by a pair of homogeneous polynomials $[f_0, f_1]$ of degree *d* with no common factor. Write:

$$f_0 = a_d x^d + \cdots + a_0 y^d$$
 and $f_1 = b_d x^d + \cdots + b_0 y^d$.

Identify the morphism *f* with a point in projective space:

$$f \leftrightarrow [a_d : \cdots : a_0 : b_d : \cdots : b_0] \in \underbrace{\mathbb{P}^{2d+1} \smallsetminus \{\operatorname{\mathsf{Res}} = 0\}}_{\operatorname{\mathsf{Hom}}_d}.$$

Arithmetic Dynamics	Motivating Analogy	PCF Maps	Unlikely Intersections
		0000000000	

Digression: Moduli spaces

A morphism $f : \mathbb{P}^1 \to \mathbb{P}^1$ of degree *d* is given by a pair of homogeneous polynomials $[f_0, f_1]$ of degree *d* with no common factor. Write:

$$f_0 = a_d x^d + \cdots + a_0 y^d$$
 and $f_1 = b_d x^d + \cdots + b_0 y^d$.

Identify the morphism *f* with a point in projective space:

$$f \leftrightarrow [a_d : \cdots : a_0 : b_d : \cdots : b_0] \in \underbrace{\mathbb{P}^{2d+1} \smallsetminus \{\operatorname{\mathsf{Res}} = 0\}}_{\operatorname{\mathsf{Hom}}_d}.$$

Definition

The moduli space of degree *d* morphisms of \mathbb{P}^1 is

$$M_d := \operatorname{Hom}_d / \operatorname{PGL}_2$$
 .

Arithmetic Dynamics	Motivating Analogy	PCF Maps 0000●0000000	Unlikely Intersections
PCE vs CM			

Some properties of CM elliptic curves:

- algebraicity (isomorphic to an EC over $\overline{\mathbb{Q}}$). \checkmark
- sparsity (CM points are countable Zariski-dense set of points in moduli space, finitely many CM curves over a given number field)
- potential good reduction at every prime (integral j invariant)
- exception to Serre's open image theorem

Theorem (Benedetto-Ingram-Jones-Levy, 2013)

Excluding the Lattès maps, PCF maps form a set of bounded height in the moduli space of rational maps of degree d.

Arithmetic Dynamics	Motivating Analogy	PCF Maps	Unlikely Intersections
		0000000000	

Digression: Arboreal Galois representations

 $T_n(f)$ = tree with root 0, whose collection of vertices are

$$V_n(f) = \bigsqcup_{k=0}^n f^{-k}(0).$$

If
$$f(v) = w$$
, draw edge (v, w) .

 $T_n(f)$ = regular *d*-ary rooted tree for every $n \in \mathbb{N}$ provided that the forward orbits of the critical points of *f* avoid 0.

$$T_{\infty}=\lim_{\stackrel{\leftarrow}{n}} T_n.$$

Motivating Analogy

PCF Maps

Unlikely Intersections

Digression: Arboreal Galois representations

Motivating Analogy

PCF Maps 00000000000000 Unlikely Intersections

Digression: Arboreal Galois representations

 $Gal_{\mathbb{Q}}$ acts on T_n by tree automorphisms. **Arboreal Galois represenation of** f(x):

$$ho_f: \operatorname{\mathsf{Gal}}_{\mathbb{Q}} o \operatorname{\mathsf{Aut}}(\mathcal{T}_\infty)$$

Some properties of CM elliptic curves:

- algebraicity (isomorphic to an EC over $\overline{\mathbb{Q}}$). \checkmark
- sparsity (CM points are countable Zariski-dense set of points in moduli space, finitely many CM curves over a given number field)
- potential good reduction at every prime (integral j invariant)
- exception to Serre's open image theorem

Theorem (Jones, 2013)

The Galois representation associated to a PCF function of degree $d \ge 2$ has infinite index in the automorphism group of the infinite rooted d-ary tree.

Arithmetic Dynamics	Motivating Analogy	PCF Maps	Unlikely Intersections
		00000000000	

Digression: (Potential) good reduction

Recall: A morphism $f : \mathbb{P}^1 \to \mathbb{P}^1$ of degree *d* is given by a pair of homogeneous polynomials $[f_0, f_1]$ of degree *d* with no common factor.

 $f_0 = a_d x^d + \cdots + a_0 y^d$ and $f_1 = b_d x^d + \cdots + b_0 y^d$.

Write \tilde{f}_i for the polynomial we get by reducing the coefficients of f_i modulo a prime *p*.

Arithmetic Dynamics	Motivating Analogy	PCF Maps
		0000000000000

Unlikely Intersections

Digression: (Potential) good reduction

Recall: A morphism $f : \mathbb{P}^1 \to \mathbb{P}^1$ of degree *d* is given by a pair of homogeneous polynomials $[f_0, f_1]$ of degree *d* with no common factor.

 $f_0 = a_d x^d + \cdots + a_0 y^d$ and $f_1 = b_d x^d + \cdots + b_0 y^d$.

Write \tilde{f}_i for the polynomial we get by reducing the coefficients of f_i modulo a prime p.

Definition

We say that *f* has **good reduction** mod *p* if the morphism $\tilde{f} = [\tilde{f}_0, \tilde{f}_1]$ is a morphism of degree *d*.

And *f* has **potential good reduction** if some conjugate map $g \sim f$ has good reduction at *p* (possibly moving to an extension field).

PCF Maps

Unlikely Intersections

Digression: (Potential) good reduction

The morphism *f* has bad reduction at *p* if:

- The degree of *f* goes down when you reduce mod *p*.
- f_0 and f_1 pick up a common factor mod p.

Primes of bad reduction are precisely the primes dividing $\text{Res}(f_0, f_1)$.

Potential good reduction

 $f(z) = 3z^2 - 1$ has bad reduction at 3. Conjugate by $z \mapsto z/3$:

$$3f(z/3) = 3(3z^2/9 - 1) = z^2 - 3.$$

Arithmetic Dynamics	Motivating Analogy	PCF Maps ○○○○○○○○○○	Unlikely Intersections
PCF vs CM			

Some properties of CM elliptic curves:

- algebraicity (isomorphic to an EC over $\overline{\mathbb{Q}}$). \checkmark
- sparsity (CM points are countable Zariski-dense set of points in moduli space, finitely many CM curves over a given number field)
- potential good reduction at every prime (integral j invariant) ×
- exception to Serre's open image theorem

Theorem (Anderson-M-Tobin)

Let $d, p \in \mathbb{Z}$, with $d \ge 2$ and p prime. Then there exists a *PCF* polynomial $f \in \overline{\mathbb{Q}}[z]$ of degree d with persistent bad reduction at p if and only if $d = p^n \ell$ for some integers $n \ge 0$ and $\ell > p$ with $p \nmid \ell$.

Some properties of CM elliptic curves:

- algebraicity (isomorphic to an EC over $\overline{\mathbb{Q}}$). \checkmark
- sparsity (CM points are countable Zariski-dense set of points in moduli space, finitely many CM curves over a given number field)
- potential good reduction at every prime (integral j invariant) ××××
- exception to Serre's open image theorem

Theorem (Ingram-Krieger-Looper-M)

Let $d \ge 2$. There does not exist a finite set $S \subseteq M_{\mathbb{Q}}$ such that every PCF rational function of degree d has potential good reduction outside S.

Motivating Analogy

PCF Maps

Unlikely Intersections

Everything I know about unlikely intersections

PCF Maps

Unlikely Intersections

Everything I know about unlikely intersections

Vaguely: "Special points" should not be dense in a variety unless the variety is "special."

Conjecture of Lang

Proved independently by Tate, Serre, Ihara, maybe others...

A plane curve can contain only finitely many points whose coordinates are both roots of unity, unless it's a "special curve," that must contain infinitely many for some obvious reason.

Motivating Analogy

PCF Maps

Unlikely Intersections

Masser-Zannier theorem

Theorem

Let P_{λ} and Q_{λ} be linearly independent points in $E_{\lambda} : y^2 = x(x-1)(x-\lambda)$ (the Legendre family of elliptic curves). Then

 $\{\lambda \in \mathbb{C} : P_{\lambda} \text{ and } Q_{\lambda} \text{ are both torsion}\}$

is finite.

Motivated by his joint work with Masser, and by the analogy between torsion points on elliptic curves and preperiodic points for dynamical systems, Zannier posed the following question in 2008:

Question: What can be said about the set of $c \in \mathbb{C}$ such that both 0 and 1 are preperiodic for $f(z) = z^2 + c$?

- c = 0: 0 and 1 are both fixed
- c = -1: 1 maps to the two-cycle $\{0, -1\}$.
- c = -2: $f^2(0) = 2$ which is fixed, and f(1) = -1 which is fixed.

Motivating Analogy

PCF Maps

Unlikely Intersections

Baker and DeMarco (2009)

Theorem

Fix $a, b \in \mathbb{C}$ with $a \neq \pm b$. Then

 $\{c \in \mathbb{C} : a \text{ and } b \text{ are both preperiodic for } z^2 + c\}$

is finite.

Motivating Analogy

PCF Maps

Unlikely Intersections

The promise of arithmetic dynamics

Motivating Analogy

PCF Maps

Unlikely Intersections

DeMarco, Krieger, Ye (2019)

Conjecture of Bogomolov, Fu, and Tschinkel

There exists a uniform constant B such that

$$\pi_1(E_1^{\mathrm{tors}}) \cap \pi_2(E_2^{\mathrm{tors}}) \leq B$$

for any pair of elliptic curves E_1 , E_2 over \mathbb{C} and any pair of standard projections π_i for which $\pi_1(E_1[2]) \neq \pi_2(E_2[2])$.

Proved for E_{t_i} : $y^2 = x(x - 1)(x - t_i)$ and $\pi_i(x, y) = x$ by considering the associated Lattès maps and (heavy) machinery from arithmetic dynamics.

Motivating Analogy

PCF Maps

Unlikely Intersections

Thank you!

