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Mod ℓ representations

Let ℓ be a prime. Let A be a principally polarised abelian variety of
dimension g over a number field K.

The ℓ-torsion subgroup of A(K), that is, A[ℓ] := {P ∈ A(K)|ℓP = 0}
has the structure of 2g dimensional vector space over Fℓ:

A[ℓ] ∼= F2g
ℓ .

The absolute Galois group GK acts linearly on this space, giving a
representation

ρℓ : GK → GL2g(ℓ).

Furthermore, the Weil pairing (which is a non-degenerate symplectic
pairing) A[ℓ]× A[ℓ] → F∗

ℓ , is preserved up to similitude by GK.

Together with the above, this means our representation lands in the
subgroup

ρℓ : GK → GSp2g(ℓ).
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Images of mod ℓ representations

Serre’s Open Image Theorem
Let E/K be an elliptic curve with End(E) ∼= Z. Then for all but finitely
many primes ℓ, we have Gal(K(E[ℓ])/K) = GL2(ℓ).

Theorem (Hall ’08)
Let C : y2 = f(x), where f ∈ K[x] has degree 2g + 1. Let J = Jac(C).
Suppose End(J) ∼= Z, and f has a double root modulo some prime p.
Then for all but finitely many primes ℓ, we have
Gal(K(J[ℓ])/K) = GSp2g(ℓ).

Theorem (Anni, V. Dokchitser ’20)
Let g be a positive integer so that 2g + 2 satisfies “double Goldbach +
ε”. Then one may find an explicit hyperelliptic curve defined over Q
of genus g such that the associated mod ℓ images are maximal for all
primes ℓ.
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What about “natural” subgroups of GSp2g(ℓ)?

The rough intuition for the image ρℓ is that it should be as big as
possible. In other words, it should be GSp2g(ℓ) unless there is a good
reason.

What’s a good reason?

Endomorphisms!
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Natural source of endomorphisms?

Let r be an odd prime, f ∈ Q(ζr)[x] without repeated roots.

Let C be the smooth projective curve defined by the affine model

yr = f(x).

There is a natural automorphism on C coming from y 7→ ζry.

This induces an automorphism

[ζr] : J → J

on the jacobian J of C.

[ζr] gives rise to an automorphism on J[ℓ] for each ℓ 6= r.

This automorphism preserves our the Weil pairing.

Hence the image of
GQ(ζr) → GSp2g(ℓ)

lies in the centraliser of [ζr] ∈ GSp2g(ℓ).
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What does the centraliser of [ζr] look like?
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How does one show ρℓ(GK) is “as big as possible”?
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A group theory checklist

Theorem (Arias-de-Reyna, Dieulefait, Wiese ’16)
Let G ≤ GSp2g(ℓ) be a subgroup containing a transvection, ℓ ≥ 5
prime. If G does not contain Sp2g(ℓ), then one of the following holds:

• G is a reducible subgroup;
• G is an imprimitive subgroup.

Theorem (G.’20)
Let G ≤ GLn(ℓ

i) be a subgroup containing a transvection, ℓ ≥ 5
prime. If G does not contain SLn(ℓ

i), then one of the following holds:

• G is a reducible subgroup;
• G is an imprimitive subgroup;
• G is contained in GLn(ℓ

j) with j < i ;
• G is contained in GSpn(ℓ

i) or GUn(ℓ
i/2).

A similar result holds for GUn(ℓ
i/2).
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Control of inertia subgroups

Let p be a prime of Q(ζr) dividing the rational prime p.

Theorem (T. Dokchitser ’18)
Let C be a curve defined by f(x, y) = 0 with f ∈ Q(ζr)[x, y], satisfying
some additional hypothesis.

Then the action of the inertia group Ip on Vℓ(Jac(C)), p 6= ℓ, can be
deduced from the p-adic valuations of the coefficients of f.

Furthermore, Tim’s results give a regular model of the curve with
strict normal crossings. This is important for producing transvections.
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So far...

Theorem (G.’20)
Let d ≥ 12 be a natural number divisible by 2r which is also the sum
of two distinct primes q1 < q2.

Suppose there exists a prime q2 < q3 < d. If r > 23 assume the class
number of Q(ζr) is odd and d = q3 + 1.

Then given a polynomial f ∈ Q(ζr)[x] of degree d whose coefficients
satisfy certain congruence conditions, the image of the
representation ρℓ : GQ(ζr) → Aut(J[ℓ]) contains the products

• SLn(ℓ
i)

r−1
2i if i the inertia degree of ℓ in Q(ζr) is odd; and

• SUn(ℓ
i/2)

r−1
i if i the inertia degree of ℓ in Q(ζr) is even

for all ℓ outside of a small finite explicit set.
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The last mile

When looking at y3 = f(x) of genus g, and primes p ≡ 1 mod 3, I
found:

g 3 4 6 7
det ◦ρλ (Frobp) pp pp2 p2p2 p2p3
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CM theory

Let A/K be a g dimensional abelian variety such that End0(A) is a
field of dimension 2g over Q. Such abelian varieties are said to have
complex multiplication.

The endomorphism algebra allows us to view the λ-adic
representations as being one dimensional, i.e., characters.

The Main Theorem of Complex Multiplication tells us there exists an
algebraic Hecke character Ω: A∗

K → C and each of the λ-adic
representations can be obtained from Ω.

Furthermore, the infinity type of Ω is determined by the
Shimura-Taniyama formula.

In our situation, we also get an algebraic Hecke character giving rise
to the det ◦ρλ.
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The endomorphism character

Theorem (Fité ’20)
Let A/K be an abelian variety with endomorphism algebra
E = EndK(A)⊗Q a field. Suppose K ⊇ E and E/Q are Galois. Then
exists an algebraic Hecke character Ω: A∗

E → C whose λ-adic avatars
agree with det ◦ρλ for

ρλ : GK → Aut(Tλ(A))

and has infinity type determined by the action of End(A) on Ω0(A).
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Images

Putting this all together, we can construct genus g curves
yr = f(x) ∈ Q(ζr)[x] whose jacobians J satisfy the following:

Theorem (G.’20)
For all but a finite explicit list of primes ℓ, the image of

ρℓ : GQ(ζ3) → Aut(J[ℓ])

is for i odd:
ρℓ(GQ(ζ3)) = GLg(ℓ)

d g
3e,6 ⋊ 〈χℓ〉

and for i even:
ρℓ(GQ(ζ3)) = GUg(ℓ)

d g
3e,6.〈χℓ〉.

Theorem (G.’20)
Let ℓ ≡ 1 mod r. Then for all but a finite explicit list of primes ℓ, we
have

ρ̄λ(GQ(ζr)) = GLn(ℓ)

where n = 2g
r−1 .
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A few examples

For d ∈ {12, 18, 24} the curves

y3 − ζ2
3πy2 − ζ2

3 y = xd + xd−1 + 7x3 + 14x2 + 45ζ3π

where π = 1 − ζ3 have maximal image at all but a finite explicit list of
primes.

In particular, outside this list, they satisfy

ρ̄λ(GQ(ζ3)) = GLd−2(ℓ) for ℓ ≡ 1 mod 3;

and
ρ̄λ(GQ(ζ3)) = ∆Ud−2(ℓ) for ℓ ≡ 5, 29 mod 36.

In fact, if d = 12, 24 this holds for ℓ ≡ 5 mod 12.
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And another one

For ℓ 6= 2, 3, 7, 41, 701, 1039501386253916593179, or
439258487404987531911163270843844304591936466390597312579686975888086620510735

1354930470916194229999769267625792575400330624106332584372975559484695436136367
118772361796350659366993443881953314038538101272367583

the superelliptic curve

y7 = x14 + πx13 + 2π7x7 + 6π12x2 + 246π7

where π = 1 − ζ7, has maximal image at ℓ.

If λ|ℓ with ℓ ≡ 1 mod 7, we have

ρ̄λ(GQ(ζ7)) = GL12(ℓ)

and for ℓ ≡ 13 mod 28

ρ̄λ(GQ(ζ7)) = ∆U12(ℓ).
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You might also like...
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Generalised symmetric Chabauty

Question (Zureick-Brown)
Is it possible to determine the cubic points (that is, cubic over Q) on
X0(65), despite its infinitely many quadratic points?

Theorem (Box, Gajović, G. ’21)
Let N ∈ {53, 57, 61, 65, 67, 73}. Then the cubic points on X0(N) are
known. Moreover the isolated quartic points on X0(65) are known.

To prove this, we extended Siksek’s “symmetric Chabauty” and
implemented our methods in Magma.

Theorem (Box ’21)
Elliptic curves over totally real quartic fields not containing

√
5 are

modular.

Theorem (Banwait, Derickx)
For p prime X0(p)(Q(ζ7)

+) 6= ∅ ⇐⇒ X0(p)(Q) 6= ∅.
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Endomorphism algebras

Notation
• K a number field
• f ∈ K[x] a polynomial without repeated roots
• Cf hyperelliptic curve associated to f
• Jf the jacobian of Cf

Theorem (Zarhin ’00)
Let f ∈ K[x] have degree n ≥ 5 and Galois group Sn or An. Then
End(Jf) ∼= Z.

Theorem (Elkin, Zarhin ’06,’08)
Suppose n = q + 1, where q ≥ 5 is a prime power congruent to ±3 or
7 modulo 8. Suppose that f(x) is irreducible and Gal(f) ∼= PSL2(Fq).
Then either

1. End0(Jf) = Q or a quadratic field; or
2. q ≡ 3, 7 mod 8 and End0(Jf) ∼= Mg(Q(

√
−q)).
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Let A/K be an abelian variety of dimension g.

Theorem (G.’19)
Suppose ℓ and p = 2g + 1 are primes satisfying 〈ℓ〉 = (Z/pZ)∗.
Suppose Gal(K(A[ℓ])/K) contains an element of order p. Then either

1. End0(A) is a number field totally inert at ℓ; or
2. End0(A) ∼= Ma(F) where F ⊊ Q(ζp) is a CM field and a = 2g

[F:Q] .

Corollary (G.’19)
Suppose g = 2, and Gal(K(A[2])/K) contains an element of order 5.
Then End0(A) is a number field totally inert at 2.
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The result below is key in establishing the previous theorem.

The endomophism field
Let A/K be an abelian variety of dimension g. Denote by L/K the
minimal extension over which all endomorphisms of A are defined.

E.g. E : y2 = x3 − 2 has g = 1 and L = Q(ζ3).

Theorem (G.’19)
Suppose p = 2g + 1 is a prime divisor of [L : K]. Then
End0(A) ∼= Ma(F) where F ⊊ Q(ζp) is a CM field and a = 2g

[F:Q] .
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